Box-and-Whisker Graphs

<u>Objective</u>: TSW construct a box-and-whisker graph using the appropriate data. M08-52C1-02

<u>Purpose</u>: Box and Whisker graphs are used in real life situations to break data into quartiles and look at medians.

Vocabulary:

<u>Box-and-Whisker Graph (Plot)</u> - A graph that uses a rectangle, "box" to represent the middle 50% of a set of data and "whiskers" at both ends to represent the extremes of the data. These graphs have four sections which each represent 25% of the total data. They look like this:

<u>Range</u> - The difference between the greatest number and the least number in a set of data.

Quartile - Along with the median, the quartiles divide an order set of data into four groups of about the same size.

<u>Median</u>-The middle number of a set of numbers when the numbers are arranged from least to greatest.

Example 1: Use the given data to make a box-and-whisker plot:

22, 17, 22, 49, 55, 21, 49, 62, 21, 16, 18, 44, 42, 48, 40, 33, 45

7. Connect all points by outlining the middle 50% with a rectangle and using lines to form the whiskers. Split the box by drawing a vertical line through the median You now have 4 sections (quartiles).

Example 2: Interpret box-whisker graphs. Use the graph below to answer questions.

1. What is the median of this data?	1. 14
2. What is the value of the lower quartile?	2. 12
3. What is the value of the upper quartile?	3. 25
4. What percent of the data falls between 5 and 12?	4. 25%
5. What percent of the data falls between 12 and 25?	5. 50%
6. What is the highest value indicated on this graph?	6. 28
7. What percent of the data is less than or equal to 25?	7. 75%

Guided Practice: Use the given data to make a box-and-whisker plot.

1. 65, 42, 45, 20, 66, 60, 76

Use this graph to answer problems 3-5:

- 3. What percentage of values is more than or equal to 14? 50%
- 4. What is the value of the upper extreme? 32
- 5. If this graph represents 80 values, how many values are less than or equal to 10? 20